Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska

نویسندگان

  • Juliet Biggs
  • Tim Wright
  • Zhong Lu
  • Barry Parsons
چکیده

S U M M A R Y Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of 10.5 ± 5.0 mm yr−1 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR

[1] The 23 October 2002 Nenana Mountain Earthquake (Mw 6.7) occurred on the Denali Fault (Alaska), to the west of the Mw 7.9 Denali Earthquake that ruptured the same fault 11 days later. We used 6 interferograms, constructed using radar images from the Canadian Radarsat-1 and European ERS-2 satellites, to determine the coseismic surface deformation and a source model. Data were acquired on asce...

متن کامل

Optimal combination of InSAR and GPS for measuring interseismic crustal deformation

High spatial resolution measurements of interseismic deformation along major faults are critical for understanding the earthquake cycle and for assessing earthquake hazard. We propose a new remove/filter/restore technique to optimally combine GPS and InSAR data to measure interseismic crustal deformation, considering the spacing of GPS stations in California and the characteristics of interseis...

متن کامل

Interseismic coupling and refined earthquake potential on the Hayward-Calaveras fault zone

Interseismic strain accumulation and fault creep is usually estimated from GPS and alignment arrays data, which provide precise but spatially sparse measurements. Here we use interferometric synthetic aperture radar to resolve the interseismic deformation associated with the Hayward and Calaveras Faults (HF and CF) in the East San Francisco Bay Area. The large 1992–2011 SAR data set permits eva...

متن کامل

Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system

The evaluation of long-wavelength deformation associated with interseismic strain accumulation traditionally relies on spatially sparse GPS measurements, or on high spatial-resolution InSAR velocity fields aligned to a GPS-based model. In this approach the InSAR contributes only shortwavelength deformation and the two data sets are dependent, thereby challenging the evaluation of the InSAR unce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007